TABLE I
THERMOELASTIC PROPERTIES OF BRAIN MATTER [14]

Specific heat, c _h	0.88 cal/gm-°C
density, p	1.05 gm/cm ³
coefficient of linear thermal expansion, G	4.1 x 10 ⁻⁵ /°C
Lame's constant, \(\lambda\)	$2.24 \times 10^{10} \text{ dyne/cm}^2$
Lame's constant, µ	$10.52 \times 10^3 \text{ dyne/cm}^2$
Bulk velocity of propagation, c ₁	1.460 x 10 ⁵ cm/sec

such that

$$u_0 = (I_0/\rho c_h)[\beta/(\lambda + 2\mu)] \tag{8}$$

and

$$F_r(r) = (d/dr)[\sin(N\pi r/a)/(N\pi r/a)]$$
(9)

also

$$F(t) = \begin{cases} t, & 0 < t < t_0 \\ t_0, & t > t_0. \end{cases}$$
 (10)

For a constrained surface, the boundary condition at the surface of the sphere is expressed by

$$u(a,t) = 0. (11)$$

The initial conditions are

$$u(r,0) = \partial u(r,0)/\partial t = 0.$$
 (12)

Following a technique used previously [14], we will first solve (6) for the case of $F_t(t) = 1$ and then extend the solution to a rectangular pulse using Duhamel's principle.

Solution for $F_t(t) = 1$

We first write the displacement u as

$$u(r,t) = u_s(r) + u_t(r,t) \tag{13}$$

and substitute (13) into (6) to obtain

$$(d^2u_s/dr^2) + (2/r)(du_s/dr) - (2/r^2)u_s = u_0 F_r(r)$$
 (14)

and

$$(\partial^{2} u_{t}/\partial r^{2}) + (2/r)(\partial u_{t}/\partial r) - (2/r^{2})u_{t} = (1/c_{1}^{2})(\partial^{2} u_{t}/\partial t^{2}).$$
 (15)

The corresponding boundary conditions are

$$u_s(a) = 0 (16)$$

and

$$u_t(a,t) = 0. (17)$$

To facilitate the solution of (14), we let

$$u_s = u_p + Br \tag{18}$$

where u_p is a particular solution of (14) and is obtained by integrating (14) from 0 to r. Thus

$$u_p = u_0(a/N\pi)j_1(N\pi r/a)$$
 (19)

where j_1 is the spherical Bessel function of the first kind. The

coefficient B is evaluated by applying the boundary condition given in (16). The solution to (14) is therefore

$$u_s = (u_0/N\pi)[aj_1(N\pi r/a) \mp (r/N\pi)],$$

$$N = \begin{cases} 1, 3, 5, \cdots \\ 2, 4, 6, \cdots \end{cases}$$
(20)

Next we let

$$u_t = R(r)T(t) \tag{21}$$

and solve (15) using the method of separation of variables. Substituting (21) into (15) we have

$$(d^2R/dr^2) + (2/r)(dR/dr) + (k^2 - 2/r^2)R = 0$$
 (22)

and

$$(d^2T/dt^2) + k^2c_1^2T = 0 (23)$$

where k is the yet undetermined constant of separation. The solution of (22) is a set of spherical Bessel functions j_1 and y_1 or

$$R = B_1 j_1(kr) + B_2 y_1(kr). (24)$$

Since R is finite at r = 0, B_2 must be zero. Substituting (24) into the boundary condition of (17) we get an equation for the separation constant k. Thus

$$j_1(ka) = 0.$$
 (25)

We may denote the zeros of j_1 by $k_m a$, $m = 1, 2, 3, \cdots$. The solution to (23) is clearly harmonic in time. We may write the general solution to (15) as

$$u_t = \sum_{m=1}^{\infty} A_m j_1(k_m r) \cos \omega_m t$$
 (26)

where A_m is yet to be determined and $\omega_m = k_m c_1$ or

$$f_m = k_m c_1 / 2\pi. \tag{27}$$

Since f_m represents the frequency of vibration of the spherical head, there are, therefore, an infinite number of modes of vibration of the spherical head irradiated with appropriate pulse-modulated microwave energy.

To evaluate A_m , we need the initial condition u(r,0) = 0 and the orthogonality relations given in [14]. Thus

$$A_{m} = \pm 2u_{0} a(1/N\pi)^{2} \cdot \frac{(1/k_{m}a)j_{2}(k_{m}a) \pm k_{m}aj_{0}(k_{m}a)/[(k_{m}a)^{2} - (N\pi)^{2}]}{[j_{1}(k_{m}a)]^{2} - j_{0}(k_{m}a)j_{2}(k_{m}a)},$$

$$N = \begin{cases} 1, 3, 5, \cdots \\ 2, 4, 6, \cdots \end{cases} (28)$$

By substituting (20) and (26) into (13), we have

$$u = u_0 D + \sum_{m=1}^{\infty} A_m j_1(k_m r) \cos \omega_m t$$
 (29)

where

$$D = (1/N\pi)[aj_1(N\pi r/a) \mp (r/N\pi)],$$

$$N = \begin{cases} 1, 3, 5, \cdots \\ 2, 4, 6, \cdots \end{cases}$$
(30)